Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Applied Sciences (Switzerland) ; 12(18), 2022.
Article in English | Scopus | ID: covidwho-2055128

ABSTRACT

Featured Application: Periodic ventilation can be a useful strategy for reducing the risk of any airborne transmitted disease. It is particularly well-suited for naturally ventilated environments in cold weathers, as it allows for a compromise between IAQ and thermal comfort, and does not require any modification to existing buildings. The importance of Indoor Air Quality (IAQ) has been highlighted by the COVID-19 pandemic, particularly due to the possibility of long-distance airborne transmission. Consequently, assessment of ventilation rates and estimation of infection risk has become a matter of the utmost importance. In this paper, a naturally ventilated elementary school classroom is studied, where carbon dioxide ((Formula presented.)) concentrations were measured during five months. Ventilation rates are calculated via a fully-mixed box model and the airborne risk of infection for SARS-CoV-2 is assessed. Risk results are found to steadily decline from winter to spring. Furthermore, analytical simulations for different scenarios are conducted. It is shown that periodic ventilation significantly reduces the transmission risk, even if it occurs only during very reduced time spans. The results show that periodic ventilation is a useful strategy for reducing the risk of any airborne transmitted disease. It is particularly well-suited for naturally ventilated environments in cold weathers, as it allows for a compromise between IAQ and thermal comfort, and does not require any modification to existing buildings. © 2022 by the authors.

SELECTION OF CITATIONS
SEARCH DETAIL